&
]. n V E' n t 1 V E'].a bS Voice Elements Technology Brief

vomeﬂlelemerﬂs
&

0
w

.NET Telephony

| \/].a bS Voice Elements Technology Brief

Product Introduction

Voice Elements is a software tool that brings telephony to the wider development community of
Microsoft .NET. The tool enables .NET developers to develop IVRs, conference bridges, dialers, call
centers, gateways or any telephony application. Supporting all .NET languages, such as VB.NET and C#,
Voice Elements includes pre-made voice application modules, sample code tutorials, and reporting
features such as call monitoring and logging.

The standard Voice Elements toolkit opens up the .NET architecture for telephony. A typical Visual
Studio developer can easily learn the Voice Elements classes and create voice applications. Connection
to all of the voice resources that a .NET application requires can be accomplished with the Voice
Elements Server or the Telephony Bank.

Deployment Options

Voice Elements Server (Option #1)

Voice Elements Server allows developers to use their own servers for telephony resources or distribute
applications for deployment on server(s) at customers’ sites. Solutions built with Voice Elements can
run on unlimited ports on a single server for a one-time fee. This option enables full control over
deployed systems and software.

Voice Elements Server

PSTHN, VOIP Inbound / Outbound
L~ ___J

Internet

Voice Resources NET Application Can Reside Remotely
Playing, Recording & Digits Application Logic

Speech Recognition Data Integration

Prompt File Caches Prompt Management

Human / Answering Detection

2 Copyright© Inventive Labs 2009

, L\ (].a bS Voice Elements Technology Brief

Telephony Bank (Option #2)

The Inventive Labs Telephony Bank is a group of resource servers that allow a Voice Elements-based
application to run at a customer site with internet access (using the resources remotely) or the complete
hosting of the voice solution at the Inventive Labs’ location. The Telephony Bank is a simple monthly
service based on the resource usage of an application. This service not only provides an easier route to
deployment, but also provides piece of mind that all equipment, servers, etc. are fully supported and
maintained.

Telephony Bank

Telephony Resources -

Playing, Recording, Telephony Interfaces -

Detecting TDM or 1P

\3 Y,

.NET Developed
Application

Supported Technologies

In addition to the Microsoft .NET Framework, Voice Elements supports speech recognition, text-to-
speech, faxing, Dialogic® TDM and VolP Hardware, and Dialogic® HMP software. A list of supported
Dialogic Interfaces is included at the end of this document.

3 Copyright© Inventive Labs 2009

&

& P o I -
lnventcilve].a bS Voice Elements Technology Brief

Code Example

Voice Elements comes equipped with a sampler pack which includes sample applications, such as an
inbound and outbound IVR and calling card solution. It also includes a skeleton application for quickly
starting your specific application. These can be used as base applications to easily modify by switching
out prompts and call flow. In addition, the code example below illustrates how easy it is within Visual
Studio to switch actions based on the detection of an answering machine or a human.

Sample code showing easy

call result switch between Voice Elements comes with
human and answering various sample applications
machine. for easy modification.

o wlSampler - Micoosadt Visued Sludh

Flo 6% Vew FBelachor Feced Subd Ocbug Dats fTook fodt Wedow e
I e = N R -
3 S baae REEIT SO
3 Db (VRO prtcardvR a1
3 ey ¥ I
3% .
13 Lag ofee =
;._r_ Log, MeiteW iyl (s Channs lResouree, bevicetame, *The dinl resull for (O} wasi (317, m MesberToall, dr): = :m‘ ‘““: -
¥ o § degutotdy
» il *) Cbrtardii
§ 1t & 3 Colegtwdti
2 11 iy am_Fcelliemors o
it £ bboordl® ax
‘? 11 & wemraniuio
® i ke
& 11 e b
5 11 g £ Sl
¥ i nne iResoaree. beviveName, “Flaying File (005, = Hasan¥essage): " RIS o
150 WaaRarrazel @ e
3 =) Rpesrdled
134 ihes Af we didn't Fpecify m messaps for Bechines.
123 smgn == nulll retuen:
157 wire, wr dopt wept to play the pesssge watil the Rechine han finisded playing ite greesing.
iz
1z /7 Sat tha BEXimumdilORGE To WAL ST 3 BECOGAN O BAlamee. THIE VALGE 13 met i SeciSeconda [1/I0Th o & BesoNd) i 2
11 B_WoiceRapsucon: Nax s loney = 30; "
13 4 Eiee aet the Maximum Gverall Tims to uALE SoF Khe 3 seconds. (I€ gresring 38 Jenger than §0 sotimds, Just DlaY tha
i #F EsxieanTinme in speeifind im deciBeconds [3/10h of & sesomdl . |
1 B_VoiceResouroe. NanisasTime = 005 Prulal
13 el
i¥ Log BriteVithld (m_Channe iBesoeree. Pevieelmme, "Taitiey for ¥ seronds of silense.)2
13 »_VaiceRescurce. Get 51 Lence (15
1 ¢ Piay the gile.
14 Log.WeuteVathld (m_Channe iBasowres. bevicelinms, “Flayiey Fuls (005, m HasshiseBessape);
144 ®_Voieshesourse. Play (i _NaskineResssge) i
14z Begak:
143 darauin s
144 Log-Srite¥ithld im_Channe [Resowice. Pevicelame, “Wnexpeci Pial Pepuli? Camcelling Call™h:
143 reverny
144]
]
b - »
€ ¥
Rty &nl Gty i ne

The next diagram illustrates a typical call flow sequence between Voice Elements Server and a .NET
application. The .NET application provides commands such as answer, play, record and “get digits”,
while the Voice Elements Server gathers and passes data from the caller interaction, such as busy, no
answer, and other results to the application.

4 Copyright© Inventive Labs 2009

&
]. n V E' I"I t l V E'].a bS Voice Elements Technology Brief

Call Flow Sequence

»fcw_ﬁaelemema umc'_ﬁgf—‘lemems
PSTN i i W
T T—_— Server .NET Application
Connect
Register DNIS's
=]
o
g -) MNew Call Event Raised
=1 CallIn :
Q. Command: Answer, Play, Record, Speech
(@) Get Digits, Hangup, etc.
41] L : Return
— as
Prompt File Streamed or Cached Needed

Command Response

Connect

Reguest Channel

Channel Granted

Dial Command

Call Out
Result: Connect, Human, Machine
Answer, Busy, No Answer, etc

@
c
-
F
o
=
=
Q.
0O
-3

Command: Answer, Play, Record, Speech.
Get Digits, Hangup, etc.

Prompt File Streamed or Cached

Command Response

5 Copyright© Inventive Labs 2009

inventivelabs

Voice Elements Technology Brief

Voice Elements in Detail

For those of you already familiar with programming in .NET, check out the simplistic class diagram:

) I0bjectMaritor

ChannelR esource I @}

RoutableResource & | VoiceResource DigitalChannel % | | sipthannel 7] | TelephonyServer
blract Clazs Clazs st act Class Claxs Class Clas:
+CllentObiect +RoutsbleResource +RoutableResource + -+ » CherlObject
 Figkds & Fields # Fiskis = Properties = Properties # Fields
= Properties = Properties = Properties =% DighalChannellink 7 IncomingSipHeaders = Properties
PF Conference. S BytesPlayed = ani S Methods J] Outgongsiphizaders 5 mutoRssignioiceResources
o Confersnceitributes A BytesRerorded R Calerldiame % Constructlink J’ RipAddress 7 CacheMods
T Devicetlane 2 ClearDigtBuffer 2 Calumber % Digralchanne! O RipCodec 5 CacheName
S Listeners o Codec CalProgress 2% UnwireEvents f RepPort :i; Guid
P ListentingTo 7 DataFormat 72 ChanneResourcelink @ WireEverts :: Ripscp % MainCodeThread
=2 RoutableResourcelink 5 DetectBargeln 2 DisResult 23 SpChannelLink o State
S Methods 5 DetectBargelnTimeout 7 Dris & Methods g; Syncvar
% ConstrustweakClientobiect 25 DigitBuffer 5F DropError ¥ Constructlink 1:‘ TelephenyLinkinfo
' DumpRotingInfo 5 EnableDigkEvents = FaxResource a® 2= TelephonyServerlink
@ PropertyChanged o FormatSpoken 5F GeCause Tichannel 2) 4% ProcessCommand 7 ThreadEvent
@ RoutableResource 7 InterDigitTimeout ' GeCauseMessage i % Redirect (+ 1 overload) & wl
& RoutsFul 5 MaximumDigits =7 GeneraiCause +Channelesource @ Refer (+ 1 overload) F Usemame
4 RouteHalf 2 MaximumSilence ' GeneralCauseMessage _ % Reinvite = Voices
49 SetConference j MaximumTime 7 MaximumTime a P:;Wm‘ &% SpChanrel S Methods
% StopAllistencrs 25 TakTime ZF OriginatingPhoneNunber =3 TicChanneLink 2% Sechannel_QasEvertThiead 49 ConnectionRestoredThvesd

% Stoplistener

75 TerminationCode

S VoiceResource

= Methods

¥ UnuireEvents

% ConstructLink

% StopListening 5 TerminationDigks = Methods % ConstructLink. oY WireEvents :u ConstructeakChertObject
i = VapFie @ Answer @ TiChamel S Events 2% Disposs
L L vaphlepFie 4 ChanneResource % UnwireEvents Quskvent % ExcateCommandHeler (+ 1 overload)
' VoiceRecogritionEnabled 4% ChanneResourcelink_Disconnected 4% WireEvents 4% ExecuteCommandHelperasync
5 VoiceRecognitiorEndOfSpeschDelsy 4% ChannelResourceLink DisconnectedThread @ GetAlChannels
E ::::zz:::g;mﬂﬂ;z:h ChanneRescurcelink_NewCall GetAGiceResowces
4% ChanneResourceLink_NewCalThresd - z @ Getchannel (+ 3 overloads
5 YolcoRecogritor Retumedword jv comtructwaamuemct :‘:I""thm" i :ﬁ:‘m“ y v Getchame\r(oe\pa .
FaxResource ® B3R YolcoRecoorionscoro % DeSerializePropertiesFromPeply B cicurce ChentObject @ GetClentVersion
lass WoiceResour celink & Dial & GetConference
“FRoutableResource = Methods @ Disconnact =l Properties @ Felds @¥ GetServerCommandLevel
T % Constructlink 3% Dispase = analoqchannelink e @ Getserverirfo
Propertes S —- iy B IS Corfarncelloe + Grneenece
1=/ Propert E E
9 CalledSubscribertd “e cetDigts @ IsConnected ¥ AnalogChannel B CorfersnceNotfy. @ IsFleCached
T ChanneResource @ Getsience 4% Orbisconnect a9 Constructlink I Moritors 4% MainCode
pr- ¥ UnwireEvents 5 Participanks
AT CoverPage ¥ OnDigt ¥ OnNewCall 'Jv e et ¥ OnAsyncComplete
5 EnableFaxStatusEvents % Play (+ 1 overhoad) 5% ProcessConmand s = Methods 4% OnNewCal
5 FaxResult @ PlayDate 4% SerializePropertiesFor Invocation v Add &% Onstream
S HeaderTest Playhumber @ StopDial o¥ Conference % PerformConnectionLost
5 PageCount % PlayTone (+ 1 averload) 4% UnwireEverts MsiChannel 2% ConferenceChang... 4% PerformConnectionRestored
“F PhaseEStatus @ PlayTouchTones ¥ WireEvents Class ¥ ConstructLink % ProcessCommand
F TransmittingSubscriberld % PlayTTs (+ 1 overload) S Everks #ChanneResource &% ConstructWeakl... @ ReqisterDNIS (+ 2 overloads)
S Mathods : va.ap E(+ 3 w:rhads) g Disconnected rgreney >: l:sz:memecn : :tstngle(hamMnde
rocessComman = a i) bart
‘: g:gi:wekammohim)v Record y oecel 4% Constructlink % Monitor % StapControlled
%o DeSerisizePropenesrom. % RecordConverstation (+ 1 averload) 4% MsiChannel 9 Remove 2% Stopimmediats
% Pispesn : % SerislizePropertiesForlnvocation % PlayzipTone 5% RemoveOnDiscon. % TelephonyServer (+ 2 overloads)
"% FaxResource % Stop 3% UnwireEvents = Events ¥ TelephonyServerlink_MewCalThread
59 FaxResourcelink FaxStatus -1: 3;“;’:::; et vents # ConferenceChang... -:: :;’::’i‘i‘:'::‘ge
'4: S:(z’fcz:fn - j\« VoiceResourceLink_Digk :u WireEvents
“% Recelve @ WipeDigitBuffer = Everts
% Send (+ 1 overload) @Y Wretvents # Connectionlost
% SerializePropertiesForlnvoc ., & Events # ConnectionRestored
@ Stop # Digi 7 Newcal

4% UnwireEvents
% WireEvents

= Events
Faxstatus

Simply add these references to your project: VoiceElementsClient, VoiceElementsCommon, and
VoiceElementsinterface. Add license.licx to your project. You are ready to go.

It all starts with a statement similar to this:

myTelephonyServer = new TelephonyServer(slpaddress, 'myusername’,
"mypassword’™) ;

For an inbound application, do this:

//VMethod to call on new phone call
myTelephonyServer . .NewCall += new
VoiceElements.Client.NewCal I (myTelephonyServer_NewCall);
and

//Point all Phone numbers assigned to you to this application
myTelephonyServer _.RegisterDNIS();

6 Copyright© Inventive Labs 2009

@
v

, 1V e].a bS Voice Elements Technology Brief

When new call comes in you get a ChannelResource and within the ChannelResource you will find a
voice resource. For example you could do the following:

myChannelResource .Answer();
myVoiceResource.Play(""Welcome.wav');

For an outbound application, do this:

myOutboundChannel = myTelephonyServer._GetChannel();
DialResult dr = myOutboundChannel .Dial (sNumberToDial);

Dialogic Interfaces
The Voice Elements native Microsoft .NET telephony toolkit supports the following Dialogic hardware
and software interfaces for both IP and TDM deployments.

Currently Available Boards and Interfaces

HMP: This includes media, call control (SIP only) and FAX

All DNI HMP Interface Boards

All J-Series Boards: This includes FAX and speech support.

All DM/V & DM/F boards: This includes fax, conference and speech.
D/4PCIU4S and D/4PCIUF: Analog interface boards.

D42JCT / D82JCT: PBX integration boards.

All DISI and HDSI: Station and interface boards.

7 Copyright© Inventive Labs 2009

&

venctlve].a b S Voice Elements Technology Brief

DI/0408-LS: Combination switching boards.

Discontinued (but Supported)

D/240SC-T1 (also D/480SC-2T1)
All MSI Station Boards
DCB Conferencing Boards

D/41E Analog Boards
Key Voice Elements Benefits

Built on Dialogic

Time to Market
Application is developed first - before the need to install drivers, boards, software or
telephone circuits
“Show the boss” - Prove application before investing in the telephony resources.

Provides for “telephony in the cloud” (i.e. “cloud computing”)

Applications and telephony resources are separate

Ease of development (do it anywhere)

Ease of debugging (step through your voice application using the Visual Studio
debugger)

No restarting of services to implement new versions

Targets Enterprises using Visual Studio and .NET
Ease of integration into existing business systems and rules

Easy transition from TDM to VolIP (SIP)

Deploy using our pre-built “Telephony Bank” or install your own server — your choice
Switching from “Telephony Bank” to your own Voice Elements server requires no code
changes

NO PORT ROYALTIES - sold by the server

Design and implement multiple applications without interfering with currently

deployed applications

Bring state of the art .NET development environment to telephony
Intellisense
Get all the benefits of developing in Visual Studio .NET

8 Copyright© Inventive Labs 2009

:]. a b S Voice Elements Technology Brief

Conclusion

Voice Elements is an enabler, allowing .NET-skilled programmers to use the environment most familiar
to them to build telephony solutions. Potential telephony projects can be realized at a much faster
pace than previous toolkits. Lastly, the various deployment options, with Voice Elements Server and the
Inventive Labs Telephony Bank, provide inexpensive and quick opportunities to market.

About Inventive Labs

Inventive Labs is a leading provider of royalty-free telephony application solutions. The company’s
software products and related services, including Voice Elements, dramatically reduce the time, cost and
complexity of creating voice solutions. By rapidly developing applications in native .NET, enterprises and
service providers can significantly reduce operating costs and quickly respond to new revenue
opportunities. Inventive Labs is headquartered in Greenwood Village, Colorado.

www.voiceelements.com

(866) 923-5290
sales@inventivelabs.com

Inventive Labs Corporation
4955 E. Preserve Court
Greenwood Village, CO 80121

9 Copyright© Inventive Labs 2009

http://www.voiceelements.com/�
mailto:sales@inventivelabs.com�

	Product Introduction
	Deployment Options
	Voice Elements Server (Option #1)
	Telephony Bank (Option #2)
	Supported Technologies

	Voice Elements in Detail
	Dialogic Interfaces
	Currently Available Boards and Interfaces
	Discontinued (but Supported)

	Key Voice Elements Benefits
	Conclusion
	About Inventive Labs

